Independent Research at POSTECH

42. Phosphorus-Ligand Redox Cooperative Catalysis: Unraveling Four-Electron Dioxygen Reduction Pathways and Reactive Intermediates

Kim, S. G.†; Kim, D.†; Oh, J.†; Son, Y. J.; Jeong, S.; Kim, J.; Hwang, S. J. J. Am. Chem. Soc. 2024, 146, 11440. (Link)

41. Cu-Based Thermoelectrochemical Cells for Direct Conversion of Low-Grade Waste Heat into Electricity

Jung, S.-M.; Kwon, J.; Lee, J.; Shim, K.; Park, D.; Kim, T.; Kim, Y. H.; Hwang, S. J.; Kim, Y.-T. ACS Appl. Energy Mater. 2020, 3, 6383. (Link)


Postdoctoral Research at MIT

40. Enthalpy-Controlled Insertion of a “Nonspectator” Tricoordinate Phosphorus Ligand into Group 10 Transition Metal–Carbon Bonds

Hwang, S. J.; Tanushi, A.; Radosevich, A. T. J. Am. Chem. Soc. 2020, 142, 21285. (Link)


Doctoral Research at Harvard University

39. Photohalogen Elimination Chemistry in Low-valent Binuclear Nickel Complexes

Hwang, S. J.; Hadt, R. G.; Ruccolo, S.; Gygi, D.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D. G. Polyhedron 2021, 203, 115228. (Link) Special issue of Polyhedron as a memorial to Malcolm Green

38. Capturing the Complete Reaction Profile of a C–H Bond Activation

Gygi, D.†; Gonzalez, M. I.†; Hwang, S. J.; Xia, K. T.; Qin, Y.; Johnson, E. J.; Gygi, F.; Chen, Y.-S.; Nocera, D. G. J. Am. Chem. Soc. 2021, 143, 6060. (Link)

37. High-Frequency and -Field EPR (HFEPR) Investigation of a Pseudotetrahedral CrIV Siloxide Complex and Computational Studies of Related CrIVL4 Systems

Bucinsky, L.; Breza, M.; Malček, M.; Powers, D. C.; Hwang, S. J.; Krzystek, J.; Nocera, D. G.; Telser, J. Inorg. Chem. 2019, 58, 4907. (Link)

36. Halogen Photoelimination from Sb(V) Dihalide Corroles

Lemon, C. M.; Hwang, S. J.; Powers, D. C.; Nocera D. G. Inorg. Chem. 2018, 57, 5333. (Link)

35. Scalable Syntheses of 4-substituted Pyridine Diimines

Gygi, D.; Hwang, S. J.; Nocera, D. G. J. Org. Chem. 2017, 82, 12933. (Link)

34. Slow Magnetic Relaxation in Intermediate Spin S=3/2 Mononuclear Fe(III) Complexes

Feng, X.†; Hwang, S. J.†; Liu, J.-L.; Chen, Y.-C.; Tong, M.-L.; Nocera, D. G. J. Am. Chem. Soc. 2017, 139, 16474. (Link)

33. Stereoelectronic Effects in Cl2 Elimination from Binuclear Pt(III) Complexes

Powers, D. C.; Hwang, S. J.; Anderson, B. L.; Yang, H.; Zheng, S.-L.; Chen, Y.-S.; Cook, T. R.; Gabbaï, F. P.;Nocera, D. G. Inorg. Chem. 2016, 55, 11815. (Link)

32. Secondary Coordination Sphere Effects in Halogen Photoelimination from Monomeric Ni(III) Complexes

Hwang, S. J.†; Anderson, B. L.†; Powers, D. C.; Maher, A. G.; Hadt, R. G.; Nocera, D. G. Organometallics, 2015, 34, 4766. (Link)

31. Trap-Free Chlorine Photoelimination from Mononuclear Ni(III) Complexes

Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R. G.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D.G. J. Am. Chem. Soc. 2015, 137, 6472. (Link)

30. Tandem Redox Mediator/Ni(II) Trihalide Complex Photocycle for Hydrogen Evolution from HCl

Hwang, S. J.; Powers, D. C.; Maher, A. G.; Nocera, D. G. Chem. Sci. 2015, 6, 917. (Link)

29. Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations

Powers, D. C.; Anderson, B. L.; Hwang, S. J.; Powers, T. M.; Perez, L. M.; Hall, M. B.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D. G. J. Am. Chem. Soc. 2014, 136, 15346. (Link)

28. Halide-Bridged Binuclear HX-Splitting Catalysts

Powers, D. C.; Hwang, S. J.; Zheng, S.-L.; Nocera, D. G. Inorg. Chem. 2014, 53, 9122. (Link)


Fuel Cell Research at KIST

27. Binaphthyl-based molecular barrier materials for phosphoric acid poisoning in high-temperature proton exchange membrane fuel cells

Jeong, D.-C.; Mun, B.; Lee, H.; Hwang, S. J.; Yoo, S. J.; Cho, E.; Lee, Y.; Song, C. RSC Adv. 2016, 6, 60749. (Link)

26. Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid

Kim, H.-Y.; Choi, I.; Ahn, S. H.; Hwang, S. J.; Yoo, S. J.; Han, J.; Kim, J.; Park, H.; Jang, J. H.; Kim, S.-K. Int. J. Hydrogen Energy. 2014, 39, 16506. (Link)

25. Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis

Anh, S. H.; Park, H.-Y.; Choi, I.; Yoo, S. J.; Hwang, S. J.; Kim, H.-J.; Cho, E.; Yoon, C. W.; Park, H.; Son, H.;Hernandez, J. M.; Nam, S. W.; Lim, T.-H.; Kim, S.-K.; Jang, J. H. Int. J. Hydrogen Energy. 2013, 38, 13493. (Link)

24. Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis

Ahn, S. H. Choi, I.; Park, H.-Y.; Hwang, S. J.; Yoo, S. J.; Cho, E.; Kim, H.-J.; Henkensmeier, D.; Nam, S. W.;Kim, S.-K.; Jang, J. H.Chem. Commun. 2013, 49, 9323. (Link)

23. Effect of Particle Size of PtRu Nanoparticles Embedded in WO3 on Electrocatalysis

Yoo, S. J.; Park, H. Y.; Hwang, S. J.; Pyo, S. G.; Kim, S.-K.; Sung, Y.-E.; Lim, T.-H. J. Nanosci. Nanotechnol. 2013, 13, 3591. (Link)

22. Supported Core@Shell Electrocatalysts for Fuel Cells: Close Encounter with Reality

Hwang, S. J.; Yoo, S. J.; Shin, J.; Cho, Y.-H.; Jang, J. H.; Cho, E.; Sung, Y.-E.; Nam, S. W.; Lim, T.-H.; Lee, S.-C.; Kim, S.-K. Sci. Rep. 2013, 3, 1309. (Link)

21. Effect of Se modification on RuSey/C electrocatalyst for oxygen reduction with phosphoric acid

Park, H.-Y.; Yoo, S. J.; Kim, S. J.; Lee, S.-Y.; Ham, H. C.; Sung, Y.-E.; Kim, S.-K.; Hwang, S. J.; Kim, H.-J.;Cho, E.; Henkensmeier, D.; Nam, S. W.; Lim, T.-H.; Jang, J. H. Electrochem. Commun. 2013, 27, 46. (Link)

20. CIS–ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties

Lee, W.-K.†; Hwang, S. J.†; Cho, M.-J.; Park, H.-G.; Han, J.-W.; Song, S.; Jang, J. H.; Seo, D.-S. Nanoscale, 2013, 5, 193. (Link)

19. Role of Electronic Perturbation in Stability and Activity of Pt-Based Alloy Nanocatalysts for Oxygen Reduction

Hwang, S. J.; Kim, S.-K.; Lee, J.-G.; Lee, S.-C.; Jang, J. H.; Kim, P.; Lim, T.-H.; Sung, Y.-E.; Yoo, S. J. J. Am. Chem. Soc. 2012, 134, 19508. (Link)

18. Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis

Anh, S. H.; Hwang, S. J.; Yoo, S. J.; Choi, I.; Kim, H.-J.; Jang, J. H.; Nam, S. W.; Lim, T.-H.; Lim, T.; Kim, S.-K.; Kim, J. J. J. Mater. Chem. 2012, 22, 15153. (Link)

17. Pt3Y electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells

Yoo, S. J.; Lee, K.-S.; Hwang, S. J.; Cho, Y.-H.; Kim. S.-K.; Yun, J. W.; Sung, Y.-E.; Lim, T.-H. Int. J. Hydrogen Energy. 2012, 37, 9758. (Link)

16. Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes

Yoo, S. J.; Hwang, S. J.; Lee, J.-G.; Lee, S.-C.; Lim, T.-H.; Sung, Y.-E.; Wieckowski, A.; Kim, S.-K. Energy Environ. Sci. 2012, 5, 7521. (Link)

15. Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance

Bae, S. J.; Yoo, S. J.; Lim, Y.; Kim, S.; Lim, Y.; Choi, J.; Nahm, K. S.; Hwang, S. J.; Lim, T.-H.; Kim, S.-K.;Kim, P. J. Mater. Chem. 2012, 22, 8820. (Link)

14. Development of a Galvanostatic Analysis Technique as an In-situ Diagnostic Tool for PEMFC Single Cells and Stacks

Lee, K.-S.; Lee, B.-S.; Yoo, S. J.; Kim, S.-K.; Hwang, S. J.; Kim H.-J.; Cho, E.; Henkensmeier D.; Yun, J. W.;Lim, T.-H.; Jang, J. H. Int. J. Hydrogen Energy. 2012, 37, 5891. (Link)

13. Stabilizer-mediated Synthesis of High Activity PtFe/C Nanocatalysts for Fuel Cell Application

Hwang, S. J.; Kim, J. W.; Yoo, S. J.; Jang, J. H.; Cho, E. A.; Lim, T.-H.; Pyo, S. G.; Kim, S.-K. Bull. Korean Chem. Soc. 2012, 33, 699. (Link)

12. Phosphate adsorption and its effect on oxygen reduction reaction for PtxCoy alloy and Aucore-Ptshell Electrocatalysts

Lee, K.-S.; Yoo, S. J.; Ahn, D.; Kim, S.-K.; Hwang, S. J.; Sung, Y.-E.; Kim, H.-J.; Cho, E.; Henkensmeier, D.; Lim, T.-H.; Jang, J. H. Electrochimica Acta 2011, 56, 8802. (Link)

11. Effects of stabilizers on the synthesis of Pt3Cox/C electrocatalysts for oxygen reduction

Kim, J. W.; Heo, J. H.; Hwang, S. J.; Yoo, S. J.; Jang, J. H.; Ha, J. S.; Jang, S.; Lim, T.-H.; Nam, S. W.; Kim, S.-K. Int. J. Hydrogen Energy. 2011, 36, 12088. (Link)

10. Enhanced stability and activity of Pt–Y alloy catalysts for electrocatalytic oxygen reduction

Yoo, S. J.; Kim, S.-K.; Jeon, T.-Y.; Hwang, S. J.; Cho, Y.-H.; Lee, K.-S.; Sung, Y.-E.; Lim, T.-H. Chem. Commun. 2011, 47, 11414. (Link)

9. Ternary Pt-Fe-Co Alloy Electrocatalysts Prepared by Electrodeposition: Elucidating the Roles of Fe and Co in the Oxygen Reduction Reaction

Hwang, S. J.; Yoo, S. J.; Jang, S.; Lim, T.-H.; Hong, S. A.; Kim, S.-K. J. Phys. Chem. C. 2011, 115, 2483. (Link)

8. Size-controlled synthesis of Pt nanoparticles and their electrochemical activities toward oxygen reduction

Kim, J. W.; Lim, B.; Jang, H.-S.; Hwang, S. J.; Yoo, S. J.; Ha, J. S.; Cho, E. A.; Lim, T.-H.; Nam, S. W.; Kim, S.-K. Int. J. Hydrogen Energy. 2011, 36, 706. (Link)

7. Facile synthesis of highly active and stable Pt-Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction

Hwang, S. J.; Yoo, S. J.; Jeon, T.-Y.; Lee, K.-S.; Lim, T.-H.; Sung, Y.-E.; Kim, S.-K. Chem. Commun. 2010, 46, 8401. (Link)

6. Fabrication and characterization of high-activity Pt/C electrocatalysts for oxygen reduction

Lim, B.; Kim, J. W.; Hwang, S. J.; Yoo, S. J.; Cho, E. A.; Lim, T.-H.; Kim, S.-K. Bull. Korean Chem. Soc. 2010, 31, 1577. (Link)


Master Research at KAIST

5. Highly efficient and versatile synthesis of polyarylfluorenes via Pd-catalyzed C–H bond activation

Hwang, S. J.; Kim, H. J.; Chang, S. Org. Lett. 2009, 11, 4588. (Link)

4. Synthesis of Condensed Pyrroloindoles via Pd-Catalyzed Intramolecular C–H Bond Functionalization of Pyrroles

Hwang, S. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 16158. (Link)

3. Palladium-Catalyzed C–H Functionalization of Pyridine N-Oxides: Highly Selective Alkenylation and Direct Arylation with Unactivated Arenes

Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. (Link)

2. Evaluation of Catalytic Activity of Copper Salts and their Removal Processes in the Three-Component Coupling Reactions

Hwang, S. J.; Cho, S. H.; Chang, S. Pure Appl. Chem. 2008, 80, 873. (Link)

1. Copper-Catalyzed Three-Component Reaction of 1-Alkynes, Sulfonyl Azides, and Water: N-(4-Acetamidophenylsulfonyl)-2-phenylacetamide

Cho, S. H.; Hwang, S. J.; Chang, S. Organic Syntheses 2008, 85, 131. (Link)

† denotes equal contribution